Data Reduction Effort at BNL

Brett Viren

Physics Department

BROOKHAVEN
NATIONAL LABORATORY

Local EDG 2017 Feb 6

Data Reduction Job and Efficacy

Job will consist of these major parts

- ightarrow gives reduction factor relative to canonical 12 bit packing and 4× compression if saved after given step
- input unpacking: with DAQ's raw data access library (DAL)
 → undo ~ 4× compression, 12 → 32 bit: ~ 10× inflation
- ADC mitigation: stuck codes and non-linearity corrections → may improve compression at few 10% level (total guess)
- 3 noise filter: reduce excess noise
 - \rightarrow if pD/SP is noisy $4\times \rightarrow \sim 6\times$ compression, o.w. no data reduction here.
- 4 signal processing: waveform deconvolution + signal-ROI → 150× (drop noise waveforms, reduce entropy)
- **(5) rebinning:** exploit oversampling but respect Nyquist → rebin-3 400× (3× and some entropy reduction)
- 6 output packing: save in raw-like format
 - needs a "reduced DAL" similar to "raw DAL"
 - relies on ROOT compression
 - this step is assumed for above reduction estimates

DocDB 2089 for details

Many Contexts for Data Reduction Code

Need steps 2 – 4 (ADC, noise filter, signal processing) for:

- OM online monitoring inside artDAQ
 - This is a "maybe"
 - I think all OM should stick with showing raw quantities.

DQM aka prompt processing, aka p3s

• at least any reco job will need the "cooked" data

Offline production processing, reconstruction

- Either offline uses ~ 10 TB reduced data (preferred) or
- Offline has to run steps 2 4 directly on 2.5 PB
- \rightarrow if so, \sim 10 TB reduced data is (hopefully) a side-product

Sim simulation connection to the reduction code:

- model ADC features and expected excess and inherent noise to generate data to evaluate reduction efficacy.
- → requires to pack simulation output in raw DAL format
- run signal processing on simulation output in any case (even if simulating noise-free and "perfect" ADC).

3/8

LArSoft and Wire Cell Toolkit

Right now:

- 35t ADC mit. and noise filt. dev in LArSoft (David)
- MicroBooNE noise filt done(?) in Wire Cell Toolkit (Xin)
 - → noise filt. is integrated to LArSoft (Brian & Brett)
 - ightarrow not following Service pattern due to lack of LS expertise
- Signal processing dev in WC prototype (Xin)
- Drift simulation dev in Wire Cell Toolkit (Brett)

Want/expect for protoDUNE:

- ADC mit. dev based on CE testing results
 - Likely in LS(?) Not strictly needed in WCT.
- Generalize MicroBooNE noise, filt, in WCT
 - Improve/generalize current WCT/LS integration.
 - This may end up being a no-op, but we have to be ready
- Implement sig. proc. in WCT and integrate into LS
- Finish drift sim in WCT and integrate into LS

Constraint: WCT will not depend on LS, integration involves writing LS job **modules** or **services** which call out to WCT.

What I can do and what I need help with

My software plate:

- Provide drift simulation and integrate uBoone and Milind's noise models.
- Do more data reduction studies using uBoone data?
- Sig.proc. prototype → WCT (either assist or do the work)
- Raw and reduced "DAL".
- Make LS integration succeed.

Where I would need help: (basically, LS integration)

- Working in LS, build, developer environment, configuration, release issues.
 - → this may have just gotten a little easier with the announcement of official Ubuntu 16.04 support by FNAL.
- Defining Service Interfaces for integration
 - need's coordination with David and greater LS community.
 - if we even go this route, module-level integration is an option

5/8

Other concerns

- Data reduction "keep up" needs ~3000 cores
 - need ~ 6× this for full processing
- Data reduction "keep up" needs job management
 - a second instance of **p3s** would work.
 - need production processing or some group to include it in their scope.
- Data access library (DAL)
 - Must work closely with DAQ group
 - Want both packing (for sim) and unpacking code for all raw fragments
 - Want a "DAL" for reduced data (or include in raw DAL)
 - Must release new raw DAL before production DAQ writes new blocks. (ideally!)
 - New DAL code must still pack/unpack old data.

backups

LS Integration: Module vs. Service

- An art/LS job is a string of Modules communicating by data products.
- LS Services allow to share code across Modules or even outside of a Module.
- Defining a Service requires defining its method interface and the data types the methods take and return.
- The interface should be general enough but capture the abstraction. It's hard to get this right. Needs community involvement.
- Implementing an interface is somewhat more work than dumping code into a job module.
- Only one instance of an Art Service implementation can be created.
 Would like to extend Art to include "Tools" which overcome this limitation.

N.B.: Wire Cell Toolkit is heavily based on interfaces of which most are "Tools" rather than singleton "Services".